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Nonlinear diffusion control of spatiotemporal chaos in the complex Ginzburg-Landau equation
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The role of nonlinear diffusion terms in the stability of periodic solutions in the regime of spatiotemporal
chaos is studied. The stabilization of unstable plane waves in the complex Ginzburg-Landau equation in
weakly chaotic regimes such as phase turbulence and spatiotemporal intermittency or in strong chaotic ones
such as defect turbulence is demonstraf8d.063-651X97)07410-2

PACS numbgs): 05.45:+hb, 47.54+r, 82.40.B;j

I. INTRODUCTION system boundary. Stabilization of a plane wave extended
through the entire system has been achieved by adding time-
Under nonequilibrium conditions, a spatially extendeddelayed feedback terms to the CGLE. The feedback can be
system often undergoes a transition from a uniform state to aither local[13] (at each spatial point, the field at the same
state with spatial variation, usually referred to as a patternpoint at previous times is fed backr global[14,15 (at each
Their formation is generally associated with nonlinear ef-spatial point a term proportional to the integral of the field
fects, which in may cases can lead to qualitatively differeniover the spatial variable is fed backn both cases, the added
phenomena such aspatiotemporal chaos[1] (STC). terms vanish for the stabilized plane-wave solution, so it is
Loosely, the term spatiotemporal chaos is commonly acpossible to stabilize precisely the same plane waves that are
cepted to refer to a deterministic system that has irregulaninstable in the original CGLE. However, the added global
variation and is unpredictable in detail both in space and iffeedback terms do not preserve the phase invariance of the
time. There are known examples of experimental systemsyriginal CGLE.
well characterized and precisely controllg?]1], that show Feedback is the most often used approach for chaos con-
such behavior. In most cases STC can be described withiftol in spatially extended systems. It has been applied to a
the context of weakly nonlinear theories since these statasonlinear drift-wave equation driven by a sinusoidal wave
arise in the proximity of a threshold. These theories are wel[16] and, in conjunction with a spatial filter, it has also been
developed in the form of so-called complex Ginzburg-applied to stabilize rolls and hexagonal structures in a model
Landau equationeCGLES [3]. The CGLE is a prototypical for a transversally extended three-level Idg&f] and to con-
equation for a complex fielé that exhibits STC. It accounts trol filamentation in a model for wide aperture semiconduc-
for the slow modulations in space and time of the oscillatorytor lasers based on the Swift-Hohenberg equaftis].
state in a physical system that undergoes a Hopf bifurcation In this paper we explore a different way to stabilize un-
[4]. The CGLE shows several types of ST&] that have stable periodic solutions based not on feedback terms but on
been extensively studigé—10]. nonlinear diffusion effects. Specifically, we show that stabi-
The control of the chaotic behavior of dynamical systemsization of unstable plane-wave solutions of the CGLE in the
with few degrees of freedom has been successively tested iegion of STC can be achieved adding a nonlinear diffusion
a number of systemgll]. The idea behind the control of (or diffraction term. The added term preserves the intrinsic
chaos is to modify the dynamics of the system in such a wayhase invariance of the CGLE equation and vanishes when
that a previously unstable state is now stable. Ideally, onlythe stabilizing effect is achieved, so any plane-wave solution
the stability is modified, not the state itséife., if that state  of the original CGLE is also solution of the modified equa-
was a fixed point or periodic orbit of the original system it is tion. Nonlinear diffraction effects are present in optical sys-
still a fixed point or periodic orbit of the modified system tems where the Fresnel number is intensity dependent or in
The control of spatiotemporal chaos is a more complicatedystems where the refraction index is intensity dependent,
problem and so there is a wide variety of methods intendeduch as in photorefractive materials.
to control such chaotic behavior. There have been several In Sec. Il we briefly describe the parameter regions for
attempts to achieve such control in the CGLE. For examplewhich different chaotic behaviors have been found for the
Aransonet al. [12] stabilized a structurally unstable topo- CGLE and we introduce the modified equation. Section Ill is
logical defect, whose analytical expression is known, by addelevoted to the linear stability analysis of the plane-wave so-
ing an extra term in the CGLE. The defect acts as a source dfitions. We calculate for which parameter values the added
traveling waves, which sweep all the other fluctuations to theerm is able to stabilize plane waves in the STC regions of
the CGLE. In Sec. IV we show, by integrating the equations
numerically, that the stability of the plane waves when finite-
*Present address: Instituto désién, Facultad de Ciencias, T. size perturbations are applied is in excellent agreement with
Narvaja 1674, Cdigo Postal 11200, Montevideo, Uruguay. the analytical prediction of the linear stability analysis. Fi-
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FIG. 1. Regions of the parameter spagec, for which thed=1 CGLE displays different kinds of regular and chaotic behavior. The
analytically obtained line, the Benjamin-Feir-Newell li(@FN line), is also shown. The quantities plotted in all the figures of this paper are
dimensionless.

nally, we give some concluding remarks in Sec. V. wave numberk|<kg for almost all the initial conditions.
Also in the BFN stable zone there is the spatiotemporal in-
Il. MODEL termittency region7]. Despite the fact that there exist stable

plane waves, the evolution from random initial conditions is
not attracted to them but to a chaotic attractor in which typi-
cal configurations of the fielé consist of patches of plane
waves interrupted by turbulent bursts. The modulug\dh
JA=A+(1+ic,)d2A—(1+ic,)|A2A. (2.1)  Such bursts typically touches zero quite often. Above BFN
line, the evolution ends in a spatiotemporal chaos for almost
We will assume periodic boundary conditions throughout theevery initial condition. The defect turbulence region is a
paper. This equation admits plane-wave solutions of the fornstrongly disordered region in which the modulusfohas a
, finite density of space-time zerf8,7]. The phase turbulence
Apu(X,1) = Age' o), (22 [5,6,8,23-25 region is a weakly disordered one in which
. _ |A(x,t)| remains away from zero. Nevertheless, under a par-
with amplitude 2A0: V1=K |k|<1, and frequency icyar type of initial condition it is possible to end in a
®=Cp+(Cy1—Cr)K". _ _ ordered statg10,27. Finally, the bichaos region is such that,
For 1+c,c,>0 plane-wave solutions are linearly stable gepending on the particular initial condition, the system ends
for wave numbers smaller than a limit vallil<ke. For  on attractors similar to the ones in regions of phase turbu-
|k|>ke, plane waves are unstable to phase perturbationgnce or defect turbulence or in a new attractor in which the

The one-dimensional CGLE3,4,19,2(Q for a complex
field A(x,t) describes the slow dynamics of spatially ex-
tended systems close to a Hopf bifurcation,

(Eckhaus instabilitf21]). The limit valuekg is given by configurations ofA consists of patches of phase and defect
turbulence. A detailed description can be found5ih
K2 1+cic 2.3 We consider a modification of CGLE in such a way that

the plane-wave stability region is increased. A way to do this
is by changing a parameter of the system dynamically and
The stability range vanishes at+k;c,=0 [the Benjamin- proportionally to the deviation of the system from the state to
Feir-Newell (BFN) line] and no stable plane-wave solution be stabilized. We will show that stabilization of plane waves
exists for 1+c¢,¢,<0. can be achieved by replacing the coefficient by

Numerical work for L (length of the systeinlarge  Ci+ ¥(|A|%/|Apwi?—1), Wherey is a constant andiApy/ is
[5—-10,23 has identified regions of the parameter space disthe modulus of the plane wave to be stabilidég|=A.
playing different kinds of regular and spatiotemporal chaoticNotice that as the added tere(|A|?/|Apwl?>—1) vanishes
behavior, leading to a “phase diagram” for the CGLE in the identically for A= Apy, any plane wavé\p, that is a solu-
plane c,-c,. The five different regions, each leading to ation of Eq.(2.1) is also a solution of the modified equation.
different asymptotic phase, are shown in Fig. 1 as functionVe are not changing the solution, but we will change its
of the parameters, andc,. Two of these regions are in the stability. The added term also preserves the phase invariance
BFN stable zone and the other three in the BFN unstablef the solution of the original CGLEA— A€'¥, with ¢ being
one. The “no chaos” region in the BFN stable zone is aan arbitrary phase. The modified CGLE is then explicitly
large region where the evolution ends in a plane wave with given by

E™ .
3+c,Co+2C5
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OA=A+[1+ic,+iy(|A|%|Apn?—1)]52A We have two different branchdg,26,27 that are usually
_ called “amplitude” and “phase modes” due to the fact that
—(1+icy)|AJ2A. (2.4  for a real Ginzburg-Landau equation the eigenvalues are re-

lated specifically to amplitude and phase perturbations. Al-

though this is not the case for the CGLE, the names are still

used.

2 The amplitude modes correspond to the negative sign of
(2.9 the square root in Eq$3.8). For any value ot4, c,, andk,

with T;=c,— v and ¢y, = 7/|Apwl%. In this way, the stabi- the growth rate Ref) as function of the perturbation wave-

lizing added term can be seen explicitly as a nonlinear dif/éngth q is always negative and takes the value

From another point of view, Ed2.4) can be rewritten as

AA=A+[1+ic +icy |AI?102A—(1+icy)|AlPA,

fusive term in the CGLE. Re(n) = —2Aj at g=0. The addedy term modifies slightly
the value of Ref), but it never changes its sign, so these
Il. STABILITY ANALYSIS perturbations are always damped.

The phase modes are associated with the positive sign of
We study the stability of the plane-wave solutid@s2) of  the square root in Eq3.8). The growth rate vanishes iden-
Eq. (2.4 using a standard linearization procedure. Considetically atq=0 for any value of the parametets, c,, andk,
the time evolution of small perturbations in the amplitudeso all the plane-wave solutions are marginally stable. The
and phase origin of this neutral stability is the phase invariance
Tz o A— A€ of the solutions of Eqs(2.1) and(2.4). Forq very
A(X,t)=[Ag+ er (x,t)]e/[kxottedxn] 3.1 large, the growth rate is negative and behaves-ag, so
short-wavelength perturbations are always damped. How-
ever, long-wavelength perturbations can grow, destabilizing
the original plane-wave solution; to see this we expand Eq.
(3.8 for smallq

wherer (x,t) and ¢(x,t) are real perturbations in the ampli-
tude and phase, respectively, anis a formal parameter to
keep track of small numbers.

Substituting Eq(3.1) into Eq.(2.4) yields to a polynomial

in € up to ordere®. The terms of ordee® vanish identically. R =Dg2+0(g* 3.9
The first-order terms yield the linearized equations for the &7)=Dbg (@, 39
perturbations where

Oyr = 2A351 — 2Akdydp— 2C1Kaur — C1AGI2+ 32T, K2 Ck? ok

3.2 D:_1—0102+2(1+C%)A—g+’y _A_S+ A_é)
Jyp=—2C,Aof +2 < 20.ko bt 2 r + k®
\p= CoAor 'onr C1kdyxep A, xI x® _'_ZYZE_ (3.10
C1 . - . . .
+A—05’xr- 3.3 If this coefficient is positive, there is a range of long-

wavelength perturbations that grow. The condit@r:0 is
We consider solutions of Eqé3.2) and(3.3) proportional to  necessary for stability but not sufficient since the growth
e’ ™19 where for periodic boundary conditiorts is real ~ coefficient obtained from the full expressidB.8) can be
whereasy is in general a complex quantity. By substituting Positive for someg despite the coefficierd being negative.
into Egs.(3.2) and(3.3), we obtain the dispersion relation  In this sense, in general, the requiremBrt 0 will give only
an upper bound for the stability region iy, c,, andk
n+ 2A§+ g°+2ic,qk 2igk—c,q? 0 space. However, for the values of andc, considered in
C10%+2C,A2—2igk+2vk? 7+0q?+2ic,qk s EE::;’ﬁ{’ggﬁvit;hreegeig:'reme'm<o gives a very good limit for
' For the unperturbed CGLE®=0) the conditionD<0

The solutions of Eq(3.4) are leads to the standard Eckhaus instability limik<kg with
ke given by Eq.(2.3). For y#0 the first thing to notice is
n=- (A§+ g?+2ic,;qk) = Ju+iv, (3.5 that independently of the value of the parametgrandc,,
the added term never changes the stability of the homoge-
whereu andv are polynomials neous solutiork=0. This can be seen from the fact that in

Egs.(3.6—(3.8), v only appears in terms with powers kf
In general, the coefficie® depends on even powerslofip
to the sixth power, so one has to solve a cubic equation to
find explicitly the limits of the range of values &ffor which
plane waves are stable. In Figs. 2—4 we plotted this range as
a function of the parametey, for several values of andc,.

Figure 2 shows the stability region fop=—0.3 and dif-
\/—2 ferent values ofy as indicated in the figure caption. For

2

u=Aj+49%k?>— 2¢,c,A39%— c2q*— 2yc,9%k?, (3.6)
v =4gk(c10%+ C,A3+ yk?). (3.7

The real part ofy indicates the growth rate of the perturba-
tions

u+ul+o - -
(3.9 plane waves wittk#0 the stability range clearly changes

Re(7)=—Aj—q?=
&) 0~ with the value ofy as displayed in Figs.(B)—2(d). For small
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FIG. 2. Stability region for the plane wav@.2) for c,=—0.3 for(a) y=0, (b) y=0.5,(c) y=0.7, and(d) y=2. For comparison, the
boundary of the stability region fop=0 is shown in(b)—(d) as a dashed line.

v [Fig. 2(b)] the stability range is increased for large valuesing y=2, and forc,=—2.1 stabilization in the region of

of ¢, and slightly reduced for, < —0.5; therefore, the added defect turbulence is possible for=4.

stabilizing term has the opposite effect for smgll Increas- Figure 4c) (c,=—2.1 andy=4) shows an interesting

ing the value ofc,, the last plane wave in losing stability is intermediate shape. There are three stability regions, so plane

still the homogeneous solution as it was in the case0.  waves can exist below the BFN line and well above it, in

For y>0.6 the shape of the stability range is stronglydefect turbulence, but not for values of just above the

changed, as can be seen in Fige) 2nd Zd) for y=0.7 and BFN line. Also there is no wave vectdr for which plane

y=2. Now there are plane waves wik# 0 that are stable waves are stable both below and above the BFN liney s

for values ofc, well above the BFN line, in the region of increased the three regions coalesce and become a single

phase turbulence of the original CGl(Eee Fig. 1L one, as seen fopy=6. This is a general behavior also ob-
Figures 3 and 4 show the stability regions far=—0.9  served at other values @} for intermediate values of not

andc,=—2.1 and several values of As y is increased the shown in Figs. 2 and 3. The overall picture is as follows. For

stability region changes its shape in a similar way to beforey=0 and a fixedc, the stability region in thé-c; plane is

but at larger values ofy. For c,=—0.9 it is possible to limited by a branch of Eq2.3) (dashed line in Fig. ywhose

stabilize plane waves in the region of phase turbulence taksertex corresponds to the BFN point. Decreasing the value of
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boundary of the stability region fop=0 is shown in(b)—(d) as a dashed line.
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FIG. 5. Spatiotemporal evolution of the CGLE.4) for c;=1.5 andc,= —0.9, starting from a perturbed plane wa¥el) with k=0.5
and 0=0.007.(a) and (b) show|A(x,t)| with time running upward front=0 to t=1000 andx in the horizontal direction fory=0 and
vy=3, respectively. The absolute value of the fibi(x,t,)| and the phase gradierif(x,t,) att,=950 are displayed iic) and (d) for
v=0 andy=3, respectively.
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FIG. 6. Spatiotemporal evolution of the CGLE foy=0 andc,= — 2.1, starting from a perturbed plane wave wkth 0.55.(a) and (b)
show|A(x,t)| for y=0 andy=4, respectively. The values pA(x,to)| andd,p(x,ty) atto=950 are displayed ic) and(d) for y=0 and
v=4, respectively. Other parameters are the same as in Fig. 5.

c,, the width of the stability regiofk| <kg increases and for details of the numerical method can be seen in (&d]. We
c;— —o, ke— 1. For any smally>0 there are three stabil- start from an initial condition that corresponds to a plane
ity regions in thek-c; plane. From Eq(3.10 one can show wave plus a small random perturbation

that forc,— —<o the limits of the central region approach the

two vertical asymptote&,. = =+ \/c,/(c,— y) [dotted lines A(x,t=0)=J1-k*e"**+ o&(x), 4.1

In Figs. 4¢) and'4d)]. Two new stability regions @ <0) where £(x) is a complex Gaussian random perturbation of
appear symmetrically at very large valuescefand for val- _ zero mean and variandg(x) & (x')) = 28(x—x').

ues of|k| between the vertical asymptotes and 1. The exis- We have performed numerical simulations in different re-

tence of these new regions, which broaden dgr-~ and . : ; !

. = gions of the phase diagraffig. 1) to verify the results ob-
cover the |ntervalsl§e[— 1ka-] a_nd ke[Ka,1], implies tained from the linear stability analysis when finite-size per-
that for any nonvanishing there will be always stable plane ; .pations are applied. We have found a very good

waves well above the BFN line. However,jfis very small 54 eement between the prediction of the linear stability
these regions are located at very large, and quite unrealistigy, 5 ojs and the numerical simulations. In the no chaos re-

values ofc;. As.y is increased the_se regions extend_to Iowergion we have tested the stabilization of plane waves with
values ofc; until they coalesce with the central region.

wave vectorlk|>kg by using small values of as predicted
in Fig. 2 for c;>—0.5. With y=0, the perturbed unstable
IV. NUMERICAL SIMULATIONS plane wave evolves towards another plane wave with wave
vector|k| <kg, whereas when the control term is added the
We have performed numerical simulations of E(¢&1) initial perturbations are washed out by the dynamics and the
and (2.4) using a pseudospectral code with periodic boundsystem settles down to a plane wave with the initial wave
ary conditions and second-order accuracy in time. Spatialector. Forc;<—0.5, wehave also tested cases where the
resolution was typically 1024 modes. The time step was typiadded control term destabilizes an originally stable plane
cally At=0.001. Since very small effects have been ex-wave. In the modified CGLE, the initial plane wave evolves
plored, care has been taken in confirming the invariance ofo another plane-wave solution with a smaller wave number
the results with decreasing time step and increasing numbehat is inside the stability range given by the linear stability
of modes. The system size was always takeha®$12. The analysis.
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FIG. 7. Spatiotemporal evolution of the CGLE foy=1.5 andc,= — 2.1, starting from a perturbed plane wave wkth 0.5. (a) and(b)
show|A(x,t)| for y=0 andy=#6, respectively. The values bA(x,ty)| andd,p(x,t) atty=950 are displayed ic) and(d) for y=0 and
v=6, respectively. Other parameters are the same as in Fig. 5.

Stabilization is also possible in the different regimes offects. As predicted by the linear stability analysis, a per-
STC found in the CGLE. As characteristic examples weturbed plane wave withk=0.55 [squares in Figs. (4) and
show the following results. 4(d)] can be stabilized withy=6.

Figure 5 shows the stabilization of a plane wave for pa-
rameter valueg;=1.5 andc,=—0.9. This corresponds to
the phase turbulence reginieee Fig. 1, where no plane
waves are stable for the original CGLE. As predicted by the We have stabilized unstable plane-wave solutions in dif-
linear stability analysigsquares in Figs. (@ and 3d)], a ferent parameter regions of the CGLE where spatiotemporal
perturbed plane wave witk=0.5 can easily be stabilized chaos exists. This has been done by adding a term to the
with y=3, while for y=0 the same initial condition decays CGLE, which vanishes for the stabilized plane wave, so that
in time t=80 (approximately to phase turbulence. the stabilized plane waves are exactly the same unstable so-

Figure 6 shows a case of stabilization of a plane wave fotutions of the original CGLE. The added term can be seen as
c;=0 andc,=—2.1, in the region of spatiotemporal inter- nonlinear diffusion and preserves the intrinsic phase invari-
mittency. For the original CGLE, plane waves are stable imrance of the original equation. Although our method does not
this region if |k| is small enough, but ifk| >kg the initial  change the stability of the homogeneous solutier0, it is
perturbed plane wave evolves to a spatiotemporal intermitguite effective in stabilizing plane waves with nonzero wave
tent behaviof7]. The nonlinear diffusion term proved to be vectors. We have calculated analytically the parameter re-
an effective way of suppressing the evolution towards thejions where plane waves can be stabilized, including regions
disordered stategwith defects and other localized struc- of phase turbulence, spatiotemporal intermittency, bichaos,
tures, leading the system to a well-behaved plane wave. Thend defect turbulence. We have studied numerically the sta-
initial condition in this case was a perturbed plane wave withbility of the plane waves when finite-size perturbations are
k=0.55[crosses in Figs. (@) and 4c)]. applied. The results are in excellent agreement with the ana-

Finally, Fig. 7, obtained for parameter valugs=1.5 and lytical predictions of the linear stability analysis. Our analy-
c,=—2.1, shows stabilization of plane waves in the regionsis also shows that, in general, in systems where nonlinear
of defect turbulence, where for the unperturbed CGLE thereliffusion or diffraction effects are not negligible, these terms
are no stable plane waves and the fidldhows a strongly can change substantially the regions in parameter space for
disordered STC state characterized by the presence of desich plane waves are stable.

V. CONCLUDING REMARKS
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The basic purpose of this work was to show that stabili-ferent parameter values. A full phase diagram for the modi-
zation of plane waves is possible by using a nonlinear diffufied CGLE requires a very intensive numerical calculation,
sion term. The modified CGLE, however, can also havewhich is beyond the scope of this work.
other kinds of solutiongchaotic or nox that are different
from the ones of the original equation. From the analysis
presented here one can draw some conclusions about the
phase diagram of the modified CGLE. One is that the stabil- Financial support from DGICYT(Spair Project Nos.
ity of the homogeneous solution is not changed, so it iPB94-1167 and PB94-1172 is acknowledged. R.M. also ac-
stable only below the BFN line. Another is that ferlarge  knowledges partial support from the Programa de Desarrollo
enough, there are always stable plane waves with wave vede Ciecias Baicas (PEDECIBA, Uruguay, the Consejo
tor k=0.5, so the BFN line is no longer the limit of stability Nacional de Investigaciones Cidiitas y Tenicas(CONI-
of plane waves. Numerically we have observed phase an@YT, Uruguay, and the Programa de Cooperacigon
defect turbulence regimes in the modified equation whenberoameica (ICI, Spain. The authors also acknowledge
starting from random initial conditions above the BFN line. helpful discussions with M. San Miguel, E. Hénuez-
However we have not done a systematic exploration for dif-Garca, D. Walgraef, and G. Huyet.

ACKNOWLEDGMENTS

[1] M. Cross and P. Hohenberg, Scier2®8 1569(1994). [15] D. Battogtokh and A. Mikhailov, Physica B0, 84 (1996.
[2] M. Dennin, G. Ahlers, and D. S. Cannell, Scier2Zg2, 388  [16] H. Gang, Phys. Rev. Let?1, 3794(1993.

(1996. [17] W. Lu, D. Yu, and R. Harrison, Phys. Rev. Left6, 3316
[3] M. Cross and P. Hohenberg, Rev. Mod. PH§5,. 851 (1993, (1996.

and references therein. [18] D. Hochheiser, J. V. Moloney, and J. Legapublishedt M.

[4] W. van Saarloos and P. Hohenberg, Physica6D303(1992); - .
69, 209E) (1993. E. Bleich, D. Hochheiser, J. V. Moloney, and J. E. S. Socolar,

[5] H. Chafe in Spatiotemporal Patterns in Nonequilibrium Com- Phys. Rev. 55, 21_19(19_97)' . .
plex Systema/ol. XXI of Santa Fe Institute in the Sciences of [19] W. van Saarloos, irBpatiotemporal Patterns in Nonequilib-

Complexity edited by P. Cladis and P. Palffy-Muhoray rium Complex Systeni&ef. [5]), p. 19.

(Addison-Wesley, New York, 1995pp. 5-49. [20] A. C. Newell, T. Passot, and J. Lega, Annu. Rev. Fluid Mech.
[6] B. Shraimaret al, Physica D57, 241 (1992. 25, 399 (1993.
[7] H. Chate Nonlinearity 7, 185 (1994. [21] W. Eckhaus Studies in Nonlinear Stability TheofBpringer,
[8] D. Egolf and H. Greenside, Phys. Rev. Lét, 1751(1995. Berlin, 1965.
[9] R. Montagne, E. Hermalez-Gara, and M. San Miguel, [22] A. Torcini, Phys. Rev. Lett77, 1047(1996.

Physica D96, 47 (1996. [23] H. Chafeand P. Manneville, Physica 224, 348 (1996.

[10] R. Montagne, E. Hermalez-Gar@, and M. San Miguel, Phys.
Rev. Lett.77, 267 (1996.

[11] T. Shinbrot, C. Grebogi, E. Ott, and J. Yorke, Nat(irendon
363 411(1993. York, 1993. ) ,

[12] I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. L&t®, [25] P. Manneville and H. Che?,t@hysma.D%, 30(1996. _
2561(1994. [26] J. Lega, Ph.D. thesis, Universitee Nice, 1989unpublishedl

[13] M. Bleich and J. E. S. Socolar, Phys. Lett.2A0 87 (1996.  [27] B. Janiaudet al, Physica DS5, 269 (1992.

[14] F. Mertens, R. Imbihl, and A. Mikhailov, J. Chem. Phy€1,  [28] R. Montagne, E. Hermalez-Gar@a, A. Amengual, and M. San
9903(1994. Miguel, Phys. Rev. 56, 151 (1997).

[24] H. Chateand P. Manneville, irA Tentative Dictionary of Tur-
bulence edited by P. Tabeling and O. Cardodenum, New



