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Nonlinear diffusion control of spatiotemporal chaos in the complex Ginzburg-Landau equation
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The role of nonlinear diffusion terms in the stability of periodic solutions in the regime of spatiotemporal
chaos is studied. The stabilization of unstable plane waves in the complex Ginzburg-Landau equation in
weakly chaotic regimes such as phase turbulence and spatiotemporal intermittency or in strong chaotic ones
such as defect turbulence is demonstrated.@S1063-651X~97!07410-2#

PACS number~s!: 05.45.1b, 47.54.1r, 82.40.Bj
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I. INTRODUCTION

Under nonequilibrium conditions, a spatially extend
system often undergoes a transition from a uniform state
state with spatial variation, usually referred to as a patte
Their formation is generally associated with nonlinear
fects, which in may cases can lead to qualitatively differ
phenomena such asspatiotemporal chaos@1# ~STC!.
Loosely, the term spatiotemporal chaos is commonly
cepted to refer to a deterministic system that has irreg
variation and is unpredictable in detail both in space and
time. There are known examples of experimental syste
well characterized and precisely controlled@2,1#, that show
such behavior. In most cases STC can be described w
the context of weakly nonlinear theories since these st
arise in the proximity of a threshold. These theories are w
developed in the form of so-called complex Ginzbur
Landau equations~CGLEs! @3#. The CGLE is a prototypica
equation for a complex fieldA that exhibits STC. It account
for the slow modulations in space and time of the oscillat
state in a physical system that undergoes a Hopf bifurca
@4#. The CGLE shows several types of STC@5# that have
been extensively studied@6–10#.

The control of the chaotic behavior of dynamical syste
with few degrees of freedom has been successively teste
a number of systems@11#. The idea behind the control o
chaos is to modify the dynamics of the system in such a w
that a previously unstable state is now stable. Ideally, o
the stability is modified, not the state itself~i.e., if that state
was a fixed point or periodic orbit of the original system it
still a fixed point or periodic orbit of the modified system!.
The control of spatiotemporal chaos is a more complica
problem and so there is a wide variety of methods inten
to control such chaotic behavior. There have been sev
attempts to achieve such control in the CGLE. For exam
Aransonet al. @12# stabilized a structurally unstable topo
logical defect, whose analytical expression is known, by a
ing an extra term in the CGLE. The defect acts as a sourc
traveling waves, which sweep all the other fluctuations to
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system boundary. Stabilization of a plane wave exten
through the entire system has been achieved by adding t
delayed feedback terms to the CGLE. The feedback can
either local@13# ~at each spatial point, the field at the sam
point at previous times is fed back! or global@14,15# ~at each
spatial point a term proportional to the integral of the fie
over the spatial variable is fed back!. In both cases, the adde
terms vanish for the stabilized plane-wave solution, so i
possible to stabilize precisely the same plane waves tha
unstable in the original CGLE. However, the added glo
feedback terms do not preserve the phase invariance o
original CGLE.

Feedback is the most often used approach for chaos
trol in spatially extended systems. It has been applied t
nonlinear drift-wave equation driven by a sinusoidal wa
@16# and, in conjunction with a spatial filter, it has also be
applied to stabilize rolls and hexagonal structures in a mo
for a transversally extended three-level laser@17# and to con-
trol filamentation in a model for wide aperture semicondu
tor lasers based on the Swift-Hohenberg equation@18#.

In this paper we explore a different way to stabilize u
stable periodic solutions based not on feedback terms bu
nonlinear diffusion effects. Specifically, we show that sta
lization of unstable plane-wave solutions of the CGLE in t
region of STC can be achieved adding a nonlinear diffus
~or diffraction! term. The added term preserves the intrin
phase invariance of the CGLE equation and vanishes w
the stabilizing effect is achieved, so any plane-wave solut
of the original CGLE is also solution of the modified equ
tion. Nonlinear diffraction effects are present in optical sy
tems where the Fresnel number is intensity dependent o
systems where the refraction index is intensity depend
such as in photorefractive materials.

In Sec. II we briefly describe the parameter regions
which different chaotic behaviors have been found for
CGLE and we introduce the modified equation. Section III
devoted to the linear stability analysis of the plane-wave
lutions. We calculate for which parameter values the ad
term is able to stabilize plane waves in the STC regions
the CGLE. In Sec. IV we show, by integrating the equatio
numerically, that the stability of the plane waves when fini
size perturbations are applied is in excellent agreement w
the analytical prediction of the linear stability analysis. F
4017 © 1997 The American Physical Society
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FIG. 1. Regions of the parameter spacec1-c2 for which thed51 CGLE displays different kinds of regular and chaotic behavior. T
analytically obtained line, the Benjamin-Feir-Newell line~BFN line!, is also shown. The quantities plotted in all the figures of this paper
dimensionless.
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II. MODEL

The one-dimensional CGLE@3,4,19,20# for a complex
field A(x,t) describes the slow dynamics of spatially e
tended systems close to a Hopf bifurcation,

] tA5A1~11 ic1!]x
2A2~11 ic2!uAu2A. ~2.1!

We will assume periodic boundary conditions throughout
paper. This equation admits plane-wave solutions of the fo

APW~x,t !5A0ei ~kx2vt !, ~2.2!

with amplitude A05A12k2, uku,1, and frequency
v5c21(c12c2)k2.

For 11c1c2.0 plane-wave solutions are linearly stab
for wave numbers smaller than a limit valueuku<kE . For
uku.kE , plane waves are unstable to phase perturbat
~Eckhaus instability@21#!. The limit valuekE is given by

kE
25

11c1c2

31c1c212c2
2

. ~2.3!

The stability range vanishes at 11c1c250 @the Benjamin-
Feir-Newell ~BFN! line# and no stable plane-wave solutio
exists for 11c1c2,0.

Numerical work for L ~length of the system! large
@5–10,22# has identified regions of the parameter space
playing different kinds of regular and spatiotemporal chao
behavior, leading to a ‘‘phase diagram’’ for the CGLE in th
plane c1-c2. The five different regions, each leading to
different asymptotic phase, are shown in Fig. 1 as functi
of the parametersc1 andc2. Two of these regions are in th
BFN stable zone and the other three in the BFN unsta
one. The ‘‘no chaos’’ region in the BFN stable zone is
large region where the evolution ends in a plane wave wi
e
m

ns

-
c

s

le

a

wave numberuku<kE for almost all the initial conditions.
Also in the BFN stable zone there is the spatiotemporal
termittency region@7#. Despite the fact that there exist stab
plane waves, the evolution from random initial conditions
not attracted to them but to a chaotic attractor in which ty
cal configurations of the fieldA consist of patches of plan
waves interrupted by turbulent bursts. The modulus ofA in
such bursts typically touches zero quite often. Above B
line, the evolution ends in a spatiotemporal chaos for alm
every initial condition. The defect turbulence region is
strongly disordered region in which the modulus ofA has a
finite density of space-time zeros@6,7#. The phase turbulence
@5,6,8,23–25# region is a weakly disordered one in whic
uA(x,t)u remains away from zero. Nevertheless, under a p
ticular type of initial condition it is possible to end in
ordered state@10,22#. Finally, the bichaos region is such tha
depending on the particular initial condition, the system en
on attractors similar to the ones in regions of phase tur
lence or defect turbulence or in a new attractor in which
configurations ofA consists of patches of phase and def
turbulence. A detailed description can be found in@5#.

We consider a modification of CGLE in such a way th
the plane-wave stability region is increased. A way to do t
is by changing a parameter of the system dynamically
proportionally to the deviation of the system from the state
be stabilized. We will show that stabilization of plane wav
can be achieved by replacing the coefficientc1 by
c11g(uAu2/uAPWu221!, whereg is a constant anduAPWu is
the modulus of the plane wave to be stabilizeduAPWu5A.
Notice that as the added terme(uAu2/uAPWu221! vanishes
identically for A5APW, any plane waveAPW that is a solu-
tion of Eq. ~2.1! is also a solution of the modified equatio
We are not changing the solution, but we will change
stability. The added term also preserves the phase invaria
of the solution of the original CGLE,A→Aeic, with c being
an arbitrary phase. The modified CGLE is then explici
given by
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56 4019NONLINEAR DIFFUSION CONTROL OF . . .
] tA5A1@11 ic11 ig~ uAu2/uAPWu221!#]x
2A

2~11 ic2!uAu2A. ~2.4!

From another point of view, Eq.~2.4! can be rewritten as

] tA5A1@11 i c̃ 11 icNLuAu2#]x
2A2~11 ic2!uAu2A,

~2.5!

with c̃15c12g and cNL5g/uAPWu2. In this way, the stabi-
lizing added term can be seen explicitly as a nonlinear
fusive term in the CGLE.

III. STABILITY ANALYSIS

We study the stability of the plane-wave solutions~2.2! of
Eq. ~2.4! using a standard linearization procedure. Consi
the time evolution of small perturbations in the amplitu
and phase

A~x,t !5@A01er ~x,t !#ei @kx2vt1ef~x,t !#, ~3.1!

wherer (x,t) andf(x,t) are real perturbations in the ampl
tude and phase, respectively, ande is a formal parameter to
keep track of small numbers.

Substituting Eq.~3.1! into Eq.~2.4! yields to a polynomial
in e up to ordere5. The terms of ordere0 vanish identically.
The first-order terms yield the linearized equations for
perturbations

] tr 52A0
2r 22A0k]xf22c1k]xr 2c1A0]x

2f1]x
2r ,

~3.2!

] tf522c2A0r 12g
k2

A0
r 22c1k]xf12

k

A0
]xr 1]x

2f

1
c1

A0
]x

2r . ~3.3!

We consider solutions of Eqs.~3.2! and~3.3! proportional to
eht1 iqx, where for periodic boundary conditionsq is real
whereash is in general a complex quantity. By substitutin
into Eqs.~3.2! and ~3.3!, we obtain the dispersion relation

U h12A0
21q212ic1qk 2iqk2c1q2

c1q212c2A0
222iqk12gk2 h1q212ic1qk

U50.

~3.4!

The solutions of Eq.~3.4! are

h52~A0
21q212ic1qk!6Au1 iv, ~3.5!

whereu andv are polynomials

u5A0
414q2k222c1c2A0

2q22c1
2q422gc1q2k2, ~3.6!

v54qk~c1q21c2A0
21gk2!. ~3.7!

The real part ofh indicates the growth rate of the perturb
tions

Re~h!52A0
22q26Au1Au21v2

2
. ~3.8!
f-

r

e

We have two different branches@4,26,27# that are usually
called ‘‘amplitude’’ and ‘‘phase modes’’ due to the fact th
for a real Ginzburg-Landau equation the eigenvalues are
lated specifically to amplitude and phase perturbations.
though this is not the case for the CGLE, the names are
used.

The amplitude modes correspond to the negative sign
the square root in Eqs.~3.8!. For any value ofc1, c2 , andk,
the growth rate Re(h) as function of the perturbation wave
length q is always negative and takes the val
Re(h)522A0

2 at q50. The addedg term modifies slightly
the value of Re(h), but it never changes its sign, so the
perturbations are always damped.

The phase modes are associated with the positive sig
the square root in Eq.~3.8!. The growth rate vanishes iden
tically at q50 for any value of the parametersc1, c2, andk,
so all the plane-wave solutions are marginally stable. T
origin of this neutral stability is the phase invarian
A→Aeic of the solutions of Eqs.~2.1! and~2.4!. For q very
large, the growth rate is negative and behaves as2q2, so
short-wavelength perturbations are always damped. H
ever, long-wavelength perturbations can grow, destabiliz
the original plane-wave solution; to see this we expand
~3.8! for small q

Re~h!5Dq21O~q4!, ~3.9!

where

D5212c1c212~11c2
2!

k2

A0
2 1gS 2

c1k2

A0
2 14

c2k4

A0
4 D

12g2
k6

A0
6 . ~3.10!

If this coefficient is positive, there is a range of lon
wavelength perturbations that grow. The conditionD,0 is
necessary for stability but not sufficient since the grow
coefficient obtained from the full expression~3.8! can be
positive for someq despite the coefficientD being negative.
In this sense, in general, the requirementD,0 will give only
an upper bound for the stability region inc1, c2 , and k
space. However, for the values ofc1 and c2 considered in
this work, the requirementD,0 gives a very good limit for
the stability region.

For the unperturbed CGLE (g50) the conditionD,0
leads to the standard Eckhaus instability limit:uku,kE with
kE given by Eq.~2.3!. For gÞ0 the first thing to notice is
that independently of the value of the parametersc1 andc2 ,
the added term never changes the stability of the homo
neous solutionk50. This can be seen from the fact that
Eqs.~3.6!–~3.8!, g only appears in terms with powers ofk.
In general, the coefficientD depends on even powers ofk up
to the sixth power, so one has to solve a cubic equation
find explicitly the limits of the range of values ofk for which
plane waves are stable. In Figs. 2–4 we plotted this rang
a function of the parameterc1 for several values ofg andc2.

Figure 2 shows the stability region forc2520.3 and dif-
ferent values ofg as indicated in the figure caption. Fo
plane waves withkÞ0 the stability range clearly change
with the value ofg as displayed in Figs. 2~b!–2~d!. For small
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FIG. 2. Stability region for the plane wave~2.2! for c2520.3 for ~a! g50, ~b! g50.5, ~c! g50.7, and~d! g52. For comparison, the
boundary of the stability region forg50 is shown in~b!–~d! as a dashed line.
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g @Fig. 2~b!# the stability range is increased for large valu
of c1 and slightly reduced forc1&20.5; therefore, the adde
stabilizing term has the opposite effect for smallc1. Increas-
ing the value ofc1 , the last plane wave in losing stability i
still the homogeneous solution as it was in the caseg50.
For g.0.6 the shape of the stability range is strong
changed, as can be seen in Figs. 2~c! and 2~d! for g50.7 and
g52. Now there are plane waves withkÞ0 that are stable
for values ofc1 well above the BFN line, in the region o
phase turbulence of the original CGLE~see Fig. 1!.

Figures 3 and 4 show the stability regions forc2520.9
andc2522.1 and several values ofg. As g is increased the
stability region changes its shape in a similar way to bef
but at larger values ofg. For c2520.9 it is possible to
stabilize plane waves in the region of phase turbulence
e

k-

ing g>2, and for c2522.1 stabilization in the region o
defect turbulence is possible forg>4.

Figure 4~c! (c2522.1 andg54) shows an interesting
intermediate shape. There are three stability regions, so p
waves can exist below the BFN line and well above it,
defect turbulence, but not for values ofc1 just above the
BFN line. Also there is no wave vectork for which plane
waves are stable both below and above the BFN line. Asg is
increased the three regions coalesce and become a s
one, as seen forg56. This is a general behavior also ob
served at other values ofc2 for intermediate values ofg not
shown in Figs. 2 and 3. The overall picture is as follows. F
g50 and a fixedc2 the stability region in thek-c1 plane is
limited by a branch of Eq.~2.3! ~dashed line in Fig. 4! whose
vertex corresponds to the BFN point. Decreasing the valu
FIG. 3. Stability region for the plane wave~2.2! for c2520.9 for ~a! g50, ~b! g51, ~c! g52, and~d! g53. For comparison, the
boundary of the stability region forg50 is shown in~b!–~d! as a dashed line.
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FIG. 4. Stability region for the plane wave~2.2! for c2522.1 for ~a! g50, ~b! g52, ~c! g54, and~d! g56. For comparison, the
boundary of the stability region forg50 is shown in~b!–~d! as a dashed line. The vertical dotted lines show the asymptotic linesk5kA6

~see the text!.

FIG. 5. Spatiotemporal evolution of the CGLE~2.4! for c151.5 andc2520.9, starting from a perturbed plane wave~4.1! with k50.5
ands50.007.~a! and ~b! show uA(x,t)u with time running upward fromt50 to t51000 andx in the horizontal direction forg50 and
g53, respectively. The absolute value of the fielduA(x,t0)u and the phase gradient]xf(x,t0) at t05950 are displayed in~c! and ~d! for
g50 andg53, respectively.
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FIG. 6. Spatiotemporal evolution of the CGLE forc150 andc2522.1, starting from a perturbed plane wave withk50.55.~a! and~b!
showuA(x,t)u for g50 andg54, respectively. The values ofuA(x,t0)u and]xf(x,t0) at t05950 are displayed in~c! and~d! for g50 and
g54, respectively. Other parameters are the same as in Fig. 5.
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c1 , the width of the stability regionuku,kE increases and fo
c1→2`, kE→1. For any smallg.0 there are three stabil
ity regions in thek-c1 plane. From Eq.~3.10! one can show
that forc1→2` the limits of the central region approach th
two vertical asymptoteskA656Ac2 /(c22g) @dotted lines
in Figs. 4~c! and 4~d!#. Two new stability regions (D,0)
appear symmetrically at very large values ofc1 and for val-
ues ofuku between the vertical asymptotes and 1. The ex
tence of these new regions, which broaden forc1→` and
cover the intervalskP@21,kA2# and kP@kA1,1#, implies
that for any nonvanishingg there will be always stable plan
waves well above the BFN line. However, ifg is very small
these regions are located at very large, and quite unreal
values ofc1. As g is increased these regions extend to low
values ofc1 until they coalesce with the central region.

IV. NUMERICAL SIMULATIONS

We have performed numerical simulations of Eqs.~2.1!
and ~2.4! using a pseudospectral code with periodic bou
ary conditions and second-order accuracy in time. Spa
resolution was typically 1024 modes. The time step was ty
cally Dt50.001. Since very small effects have been e
plored, care has been taken in confirming the invariance
the results with decreasing time step and increasing num
of modes. The system size was always taken asL5512. The
-

ic,
r

-
al
i-
-
of
er

details of the numerical method can be seen in Ref.@28#. We
start from an initial condition that corresponds to a pla
wave plus a small random perturbation

A~x,t50!5A12k2eikx1sj~x!, ~4.1!

wherej(x) is a complex Gaussian random perturbation
zero mean and variance^j(x)j* (x8)&52d(x2x8).

We have performed numerical simulations in different
gions of the phase diagram~Fig. 1! to verify the results ob-
tained from the linear stability analysis when finite-size p
turbations are applied. We have found a very go
agreement between the prediction of the linear stabi
analysis and the numerical simulations. In the no chaos
gion we have tested the stabilization of plane waves w
wave vectoruku.kE by using small values ofg as predicted
in Fig. 2 for c1.20.5. With g50, the perturbed unstabl
plane wave evolves towards another plane wave with w
vector uku,kE, whereas when the control term is added t
initial perturbations are washed out by the dynamics and
system settles down to a plane wave with the initial wa
vector. Forc1,20.5, wehave also tested cases where t
added control term destabilizes an originally stable pla
wave. In the modified CGLE, the initial plane wave evolv
to another plane-wave solution with a smaller wave num
that is inside the stability range given by the linear stabil
analysis.
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FIG. 7. Spatiotemporal evolution of the CGLE forc151.5 andc2522.1, starting from a perturbed plane wave withk50.5. ~a! and~b!
show uA(x,t)u for g50 andg56, respectively. The values ofuA(x,t0)u and]xf(x,t) at t05950 are displayed in~c! and~d! for g50 and
g56, respectively. Other parameters are the same as in Fig. 5.
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Stabilization is also possible in the different regimes
STC found in the CGLE. As characteristic examples
show the following results.

Figure 5 shows the stabilization of a plane wave for p
rameter valuesc151.5 andc2520.9. This corresponds to
the phase turbulence regime~see Fig. 1!, where no plane
waves are stable for the original CGLE. As predicted by
linear stability analysis@squares in Figs. 3~a! and 3~d!#, a
perturbed plane wave withk50.5 can easily be stabilize
with g53, while for g50 the same initial condition decay
in time t580 ~approximately! to phase turbulence.

Figure 6 shows a case of stabilization of a plane wave
c150 andc2522.1, in the region of spatiotemporal inte
mittency. For the original CGLE, plane waves are stable
this region if uku is small enough, but ifuku.kE the initial
perturbed plane wave evolves to a spatiotemporal inter
tent behavior@7#. The nonlinear diffusion term proved to b
an effective way of suppressing the evolution towards
disordered states~with defects and other localized stru
tures!, leading the system to a well-behaved plane wave.
initial condition in this case was a perturbed plane wave w
k50.55 @crosses in Figs. 4~a! and 4~c!#.

Finally, Fig. 7, obtained for parameter valuesc151.5 and
c2522.1, shows stabilization of plane waves in the reg
of defect turbulence, where for the unperturbed CGLE th
are no stable plane waves and the fieldA shows a strongly
disordered STC state characterized by the presence o
f
e

-

e

r

n

it-

e

e
h

e
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fects. As predicted by the linear stability analysis, a p
turbed plane wave withk50.55 @squares in Figs. 4~a! and
4~d!# can be stabilized withg56.

V. CONCLUDING REMARKS

We have stabilized unstable plane-wave solutions in
ferent parameter regions of the CGLE where spatiotemp
chaos exists. This has been done by adding a term to
CGLE, which vanishes for the stabilized plane wave, so t
the stabilized plane waves are exactly the same unstable
lutions of the original CGLE. The added term can be seen
nonlinear diffusion and preserves the intrinsic phase inv
ance of the original equation. Although our method does
change the stability of the homogeneous solutionk50, it is
quite effective in stabilizing plane waves with nonzero wa
vectors. We have calculated analytically the parameter
gions where plane waves can be stabilized, including regi
of phase turbulence, spatiotemporal intermittency, bicha
and defect turbulence. We have studied numerically the
bility of the plane waves when finite-size perturbations a
applied. The results are in excellent agreement with the a
lytical predictions of the linear stability analysis. Our anal
sis also shows that, in general, in systems where nonlin
diffusion or diffraction effects are not negligible, these term
can change substantially the regions in parameter space
which plane waves are stable.
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The basic purpose of this work was to show that stab
zation of plane waves is possible by using a nonlinear di
sion term. The modified CGLE, however, can also ha
other kinds of solutions~chaotic or not! that are different
from the ones of the original equation. From the analy
presented here one can draw some conclusions abou
phase diagram of the modified CGLE. One is that the sta
ity of the homogeneous solution is not changed, so it
stable only below the BFN line. Another is that forg large
enough, there are always stable plane waves with wave
tor k'0.5, so the BFN line is no longer the limit of stabilit
of plane waves. Numerically we have observed phase
defect turbulence regimes in the modified equation wh
starting from random initial conditions above the BFN lin
However we have not done a systematic exploration for
-
of
y

.

-
-
e

s
the
il-
s

c-

nd
n
.
f-

ferent parameter values. A full phase diagram for the mo
fied CGLE requires a very intensive numerical calculatio
which is beyond the scope of this work.
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